Random Variables Sections 12.7

Lecture 25

Robb T. Koether

Hampden-Sydney College

Fri, Feb 26, 2016

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

Assignment

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

2 Assignment

Random Variables

Definition (Random variable)

A random variable is a variable whose value is determined by the outcome of a random process.

Definition (Discrete random variable)

A discrete random variable is a random variable whose set of possible values is a discrete set.

Definition (Continuous random variable)

A continuous random variable is a random variable whose set of possible values is a continuous set.

Discrete Probability Density Functions

Definition (Discrete Probability Density Function)

A discrete probability distribution function, or pdf, for a discrete random variable X is function that is represented by a table of values of X paired with their probabilities.

Example (Discrete Probability Density Function)

- Roll a pair of dice and let *X* be the sum of the two numbers.
- Describe the pdf of X.
- Draw the graph of the pdf.

Example (Discrete Probability Density Function)

- One of four keys will unlock a door, but we do not know which key it is.
- So we try one key after another, randomly, but "without replacement."
- Let X be the number of keys we try until we unlock the door.
- Describe the pdf of *X*. (Draw a tree diagram of the possibilities.)
- Draw the graph of the pdf.

Continuous Probability Density Functions

Definition (Continuous Probability Density Function)

A continuous probability distribution function, or pdf, for a continuous random variable X is a continuous function with the property that the area below the graph of the function between any two points a and b equals the probability that a < X < b.

Remember,

AREA = PROPORTION = PROBABILITY

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

2 Assignment

- The TI-83 will return a random number between 0 and 1 if we enter rand and press ENTER.
- These numbers have a uniform distribution from 0 to 1.
- Let X be the random number whose value is determined by the rand function.

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

2 Assignment

What is the height of this distribution?

What is the height of this distribution?

What is the height of this distribution?

What is the probability that $1 \le X \le 2$?

What is the probability that $1 \le X \le 2$?

What is the probability that $1 \le X \le 2$?

What is the probability that $1 \le X \le 2$?

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

2 Assignment

- A subject is either a drug user or a non-drug user.
- To determine which, we measure the level of Substance "X" in his blood.
- If he is not a drug user, the level of X has the distribution N(50, 10).
- If he is a drug user, the level of X has distribution N(80, 15).

- We take a blood sample and measure the amount of *X*.
- Decision Rule: If the level is more than 65, then we will decide that he is a drug user.

• If he is not a drug user, what is the probability that the test will conclude that he is a drug user?

- If he is not a drug user, what is the probability that the test will conclude that he is a drug user?
- That would be a false positive.

- If he is not a drug user, what is the probability that the test will conclude that he is a drug user?
- That would be a false positive.
- If he is a drug user, what is the probability that the test will conclude that he is not a drug user?

- If he is not a drug user, what is the probability that the test will conclude that he is a drug user?
- That would be a false positive.
- If he is a drug user, what is the probability that the test will conclude that he is not a drug user?
- That would be a false negative.

- If he is not a drug user, what is the probability that the test will conclude that he is a drug user?
- That would be a false positive.
- If he is a drug user, what is the probability that the test will conclude that he is not a drug user?
- That would be a false negative.
- Which type of error is more serious?

normalcdf(65, E99, 50, 10) = 0.0668

normalcdf(-E99, 65, 80, 15) = 0.1587

If the means are very close together ($\mu_1 = 60$, $\mu_2 = 70$), then the probabilities of false positives and false negatives will be large.

normalcdf(65, E99, 60, 10) = 0.3085

normalcdf(-E99, 65, 70, 15) = 0.3694

If the means are far apart ($\mu_1 = 40$, $\mu_2 = 100$), then the probabilities of false positives and false negatives will both be very small.

Outline

- Random Variables
 - The Uniform Distribution
 - A Non-uniform Distribution
 - Normal Distributions

Assignment

Assignment

Assignment

- Read Sections 12.7.
- Apply Your Knowledge: 18, 19.
- Check Your Skills: 30, 31.
- Exercises 52, 54.